首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1052篇
  免费   53篇
  国内免费   1篇
  2023年   13篇
  2022年   11篇
  2021年   33篇
  2020年   18篇
  2019年   26篇
  2018年   30篇
  2017年   30篇
  2016年   35篇
  2015年   52篇
  2014年   49篇
  2013年   79篇
  2012年   77篇
  2011年   73篇
  2010年   50篇
  2009年   41篇
  2008年   53篇
  2007年   46篇
  2006年   39篇
  2005年   38篇
  2004年   30篇
  2003年   25篇
  2002年   18篇
  2001年   21篇
  2000年   15篇
  1999年   17篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   16篇
  1991年   14篇
  1990年   12篇
  1989年   16篇
  1988年   6篇
  1987年   10篇
  1986年   4篇
  1985年   10篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1979年   7篇
  1978年   3篇
  1977年   7篇
  1975年   5篇
  1971年   2篇
  1970年   2篇
  1966年   3篇
排序方式: 共有1106条查询结果,搜索用时 203 毫秒
101.
In non-irrigated agricultural fields in tropical zones, high temperature and water stress prevail during the main cropping season. Natural epizootics of Beauveria bassiana on lepidopteran pests occur during winter. Application of B. bassiana during hot months when pest populations are at their climax may prove an effective management strategy. Therefore, 29 isolates of B. bassiana were tested for their ability to germinate and grow in temperature and water availability conditions prevailing during the pest season in these fields. The effect of temperature cycles with 8 h duration of high temperature fluctuating with 16 h duration of lower temperature (similar to field conditions); low water availability; and a combination of these two stress conditions was studied. Germination and growth assays were done at fluctuating temperature cycles of 32, 35, 38, and 42+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and in media with water stress created by 10, 20, 30, and 40% polyethylene glycol (PEG 6000). Assays set at a continuous temperature of 25+/-1 degrees C with no PEG in the medium served as controls. Stress was assessed as percentage germination or as growth relative to control. Isolates showing 90% growth relative to the control at temperature cycles including high temperatures of 35 and 38+/-1 degrees C were identified. One isolate (ARSEF 2860) had a thermal threshold above 43 degrees C. At 25 degrees C, all but one isolate of B. bassiana showed >90% growth relative to the control in 10% PEG (-0.45 MPa). Some isolates were found with >90% growth relative to control in medium having 30% PEG with water availability (1.33 MPa), nearly equivalent to that in soils which induce permanent wilting point of plants. When isolates that showed >90% growth relative to the control at both stress conditions, were stressed simultaneously, a decrease in growth was observed. Growth was reduced by approximately 20% at 35+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG and was affected to a greater degree in combinations of harsher stress conditions. The isolate ARSEF 2860 with a thermal threshold of >43 degrees C showed approximately 80% relative growth at a combined stress of 38+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG. These findings will aid the selection of isolates for use in field trials in hot or dry agricultural climates.  相似文献   
102.
103.
104.
The present study has attempted to elucidate the alteration of serotonin turnover after 24 h REM sleep deprivation in different regions in brain of young rat. Sleep deprivation was induced by the inverted flowerpot technique. Results of this study show increased serotonin turnover after 24 h REM sleep deprivation in all the brain regions except in the hypothalamus. The decreased 5-HT ratio shows increased serotonin in the hypothalamus after 24 h sleep deprivation. This study indicates increased activity of serotonergic neurons in the hypothalamus after 24 h sleep deprivation. This also indicates that the hypothalamus plays a role in the immediate compensatory mechanism during 24 h REM sleep deprivation in young rats.  相似文献   
105.
106.
Region-wise interactive effects of age, swim intensity, and duration on exercise performance in the myocardium and serum lipid profile in young (4 months) and middle-aged (12 months) rats were examined. Animals were allocated to the sedentary control (SE-C) or one of the nine trainee groups. Swim training was for 6 days/week and for 4 weeks at 3 durations (20, 40, and 60 min/day) and intensities (2%, low; 3%, medium; 5%, high). Swim velocity and external work showed an age-related decline with low-intensity of 20 min/day in the middle aged. Reduction in serum cholesterol, low-density lipoproteins (LDLs), and triglycerides were accompanied by elevated levels in high-density lipoprotein in the low-to-moderately trained ones for 20 and 40 min/day. Training at 2%, intensity for 20 min/day was sufficient to alter the blood lipid profile and improve swim performance, and endurance in terms of blood lactate. A concomitant increase in Mn-superoxide dismutase (Mn-SOD) activity and reduced malondialdehyde in the left ventricle (LV) and right ventricle (RV) were evident. Lipofuscin was higher in the LV compared to RV. Our results reflect the minimization of free radical generation through appropriate exercise protocols. Our findings on improved blood lipid profile could be related to lower free radicals, which would otherwise oxidize LDLs. Further, swim training when initiated in the young and middle age for as low as 20 min/day at 2% intensity improves the Mn-SOD in the LV and RV. However, the adaptive response of the LV was weaker when compared to the RV, more so in the middle aged.  相似文献   
107.
108.
The signal produced by fluorescence in situ hybridization (FISH) often is inconsistent among cells and sensitivity is low. Small DNA targets on the chromatin are difficult to detect. We report here an improved nick translation procedure for Texas red and Alexa Fluor 488 direct labeling of FISH probes. Brighter probes can be obtained by adding excess DNA polymerase I. Using such probes, a 30 kb yeast transgene, and the rp1, rp3 and zein multigene clusters were clearly detected.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号